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On the Extrapolation Behavior of
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Generally. the extrapolation behavior of empirical equations of state is regarded
as poor, but it can be shown that state-of-the-art equations of state yield reliable
results well beyond the range where they were fitted to experimental data.
During the past years a new generation of highly accurate equations of state
which yield reasonable results even up to the limits of chemical stability of the
considered substances has been developed. In this paper, the positive influence
of recent methods for the development of equations of state on their extrapola-
tion behavior 1s discussed. The influence of the mathematical structure on
the extrapolation characteristics is analyzed and requirements for a reasonable
behavior up to extreme temperatures and pressures are formulated. As possible
ways lor assessment of the extrapolation behavior of an equation of state, com-
parisons with experimental data at very high pressures and temperatures and
with theoretically predicted features of the so-called “ideal curves™ of a fluid are
discussed. Finally, the current status of our knowledge of the extrapolation
behavior of empirical equations of state is summarized and its shortcomings are
pointed out.

KEY WORDS: empirical equations of state; high pressures: high temperatures;
Hugoniot curve; argon; carbon dioxide: ethane: helium; methane; nitrogen;
oxygen: water.

1. INTRODUCTION

Over the years, considerable interest in thermodynamic properties of fluids
at very high pressures and temperatures has resulted mainly from applica-
tions in geology, petrology, and geophysics. Several simple equations of
state have been developed especially for these applications. Usually, these
equations are valid only in restricted ranges of temperature and pressure
and they fail to represent properly accurate experimental data at lower
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temperatures and pressures. On the other hand, empirical multiparameter
equations of state are able to represent thermodynamic data under fluid
conditions for which there exist accurate experimental equipment, but
they have often failed with respect to extrapolation beyond the range of
temperatures and pressures of the data to which the equations were fitted.
Instead of developing special equations of state for very high temperatures
and pressures, it would be desirable to improve the extrapolation behavior
of these accurate equations of state in order to describe the entire range of
thermodynamic properties of a fluid as accurately as possible with a single
equation of state. With this in mind, the extrapolation behavior of empiri-
cal equations of state was one of the main topics in the discussion sessions
of the Fifth International Workshop on Equations of State, which took
place at the Ruhr-Universitdt Bochum in 1990. De Reuck [ 1] summarized
the results of this discussion, which focused mainly on the so-called “ideal
curves” (see Section 5 and the Appendix) of pure fluids.

Based on this discussion, we investigated the representation of data
outside the range of primary data, the influence of the mathematical struc-
ture of the equation on the extrapolation behavior, and the course of
the ideal curves in more detail during our work on a new equation of state
for carbon dioxide [2, 3]. The relevance of these investigations became
obvious at the Twelfth Symposium on Thermodynamic Properties in 1994,
when Pitzer and Sterner [4] presented their concept of an equation of state
valid from zero to extreme pressures, which coincided with the first interna-
tional presentation of our results [5]. With parameter sets for carbon
dioxide and water, the equation of Pitzer and Sterner was subsequently
published in different journals [6-8], whereas we hesitated to generalize
the results found for the extrapolation behavior of empirical equations of
state during our work on carbon dioxide. For the fluid state of pure carbon
dioxide the temperature and pressure range covered by data measured with
static apparatuses reaches up to 1076 K and 800 MPa, while the accuracy
of the data already deteriorates at pressures above 316 MPa. Due to the
relatively high critical temperature (7.2 304 K) and the high critical
pressure (p. = 7.38 MPa) of carbon dioxide, these limits correspond to
a reduced temperature of only 7/7.=3.54 and a reduced pressure of
p/p.=1084 and p/p.=42.8 for the accurate data sets, respectively. In
terms of reduced temperature and pressure, the range covered by reliable
data is significantly larger for other reference substances.

In the meantime, the results we obtained for the extrapolation
behavior of our equation of state for carbon dioxide have been confirmed
by the more recent equations of state for water [9, 10], argon [11, 12],
and nitrogen [13] and the investigation of ideal curves has additionally
been extended to helium, oxygen, methane, and ethane. As long as other
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substances are chemically stable under the considered conditions, no
reason became obvious why the results should not be transferable.

Following this introduction, three short examples are given for the
representation of primary data at high pressures and temperatures in
Section 2. In Section 3, comparisons with experimental data at pressures
and temperatures beyond the range covered by primary data are discussed
as a widely used opportunity to test the extrapolation behavior of equa-
tions of state. Starting from observations in Section 3, the influence of the
mathematical form of an empirical equation of state on its extrapolation
behavior is analyzed in Section 4. Finally, the question whether predictions
for universal features of the ideal curves are suitable for an assessment of
the extrapolation behavior of an equation of state is discussed in Section 5.
The Appendix gives examples for the plots of the well-known zeroth- and
first-order ideal curves of the compression factor calculated from accurate
empirical equations of state.

Since this paper is not intended as a final report on the extrapolation
behavior of empirical equations of state but as a summary of current
developments of this topic, shortcomings are pointed out and some
proposals for further investigations are made.

2. REPRESENTATION OF DATA AT HIGH PRESSURES AND
HIGH TEMPERATURES

Among the accurate thermodynamic data available for pure fluids,
experimental investigations of the (pressure, density, temperature) relation
(ppT data) usually cover the largest temperature and pressure range. Since
empirical multiparameter equations of state are generally valid only in
the range where they were fitted to data, the range where ppT data are
available determines the range of validity of reference equations of state.’
Though this fact is widely known, only a few people are aware that
this range usually reaches up to temperatures of more than 1000 K and
pressures of more than 1000 MPa for well measured substances.

As an example, Fig. 1 shows the representation of accurate ppT data
for argon at high pressures and ambient temperatures. While the functional
form of the equation of Gosman et al. [21] from 1969 was determined by
trial and error, optimization algorithms [22-24] were used to establish the

*The expression “reference equation of state™ is used for empirical equations of state which
are able to represent all (or nearly all) data available for the thermodynamic properties of
a fluid to within their experimental uncertainty; based on the knowledge available at the
time they were established, such formulations aim to yield the best possible description of
the thermodynamic properties of the corresponding substance.
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Fig. 1. Percentage deviations of selected ppT data from values
calculated from the equation of Tegeler et al. [ 11, 12] for argon. Values
calculated from the equations of Stewart and Jacobsen [20] and
Gosman et al [21] are plotted for comparison.

functional form of the later equations. The use of such algorithms has
essentially improved the capabilities of empirical equations of state at high
pressures and high temperatures.

Besides representing ppT data, equations of state are also expected to
yield reliable results for derived properties such as heat capacities or the
speed of sound. Since these properties are related to derivatives of the ppT
surface and since their relation to the dependent variable of the equation
of state is nonlinear in most cases, their representation is more sensitive to
small inaccuracies of the equation and experimental data of these proper-
ties cannot be used directly in the common linear optimization algorithms.
Over the last 10 years. improved strategies for the use of nonlinear data in
the optimization process have been developed (see, e.g.. Ref. 25), and very
recently the first nonlinear optimization algorithm was presented [ 11, 26].
If one of these techniques is used, empirical equations of state are able to
represent even caloric properties up to very high pressures. For nitrogen,
for example, Fig. 2 shows deviations between speed-of-sound data at high
pressures and values calculated from the equation of state of Jacobsen and
Stewart [30], which is the origin of the so-called MBWR form, from the
equation of Jacobsen et al. [29], which was the first equation with a func-
tional form optimized for nitrogen, and the new reference equation [13],
which was finalized using the nonlinear optimization algorithm developed

by Tegeler et al. [11, 26].
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Fig. 2. Percentage deviations of selected high-pressure speed-of-sound data
from values calculated {rom the equation of Span et al. [13] for nitrogen.
Values calculated from the equations of Jacobsen et al. [29] and of Jacobsen
and Stewart [30] are plotted for comparison.

Though the representation of data at high pressures is an important
feature for many applications, it is more important for the extrapolation
discussion to point out that state-of-the-art equations of state are not
flexible enough to follow systematically wrong courses of single data sets in
the high-pressure region. During the optimization of the mathematical
form strongly correlated pairs of terms are automatically replaced by single
terms with a similar contribution and steps for the optimization of the
length of the equation are implied. To achieve a very high accuracy, recent
reference equations usually contain 30 to 42 terms with one fitted para-
meter each, but only very view of these terms contribute significantly to the
behavior in the high-pressure region and the flexibility of the equations in
this region is therefore very restricted. The other terms are needed for the
highly accurate description of properties at lower pressures and in the
critical region® (see Section 4). Figure 3 shows a comparison between
experimental data for carbon dioxide and results from our new reference
equation of state [3]. which is used for the baseline, and from the high-
pressure equation of Pitzer and Sterner [7]. With 42 fitted coefficients, the
empirical reference equation represents the accurate data at pressures up to
60 MPa clearly better than the equation of Pitzer and Sterner with 28 fitted
coefficients, but at pressures above 100 MPa it yields results similar to

4 Such a mathematical structure is not always advantageous since it implies a high flexibility
in the low-pressure region; especially in the critical region an extensive set of accurate date

is needed to avoid misbehavior.
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Fig. 3. Percentage deviations of selected ppT data [rom values culculated
from the equation of Span and Wagner [3] for carbon dioxide. Values
calculated from the equation of Pitzer and Sterner [7] are plotted for
comparison.

those of the high-pressure equation and does not follow the faulty course
of the data.®

In contradiction to common teachings, empirical equations with a
carefully optimized mathematical structure are not flexible enough to
follow incorrect courses of data sets in the high-pressure and -temperature
region even if these data are the only experimental information which is
available in this region. Thus, it can be concluded that they will also be
stable enough to yield a reasonable extrapolation behavior in regions not
covered by data. Qualitatively this statement agrees with experience made
during the establishment of several reference equations of state (e.g., Refs.
3, 10, 11, 13, and 25) but it has not been quantified up to now. It is clear
that the limits of the range in which an extrapolation is useful depend on
the considered property, on the demanded accuracy, on features of the data
set used to establish the equation, and finally, on features of the equation
itself. Thus, a simple answer cannot be expected; systematic studies on this

topic are still lacking.

*For a more detailed discussion on the shortcomings of the date sets of Shmonov and
Shmulovich [31], see Sterner and Pitzer [6].



Empirical Equations of State 1421

3. COMPARISONS WITH DATA BEYOND THE RANGE OF
PRIMARY DATA

At pressures and temperatures beyond the range covered by ppT data,
additional experimental information on fugacities is available, particularly
for substances of geological interest. The origin of these data is measure-
ments of chemical equilibria and their evaluation depends on sets of
thermodynamic data of the other components involved in the chemical
equilibrium. The resulting fugacities vary significantly depending on the
assumptions made for the other components. Geologists are familiar with
the internally consistent sets of thermodynamic data needed for the
evaluation of the measured equilibria, but scientists working on reference
equations of state are usually not. Thus, it would be valuable to set up a
pure-component database by calculating the corresponding fugacities from
the equilibrium data published mainly in geological literature.

For carbon dioxide, only Haselton et al. [33] have published pure-
component fugacities which are derived from the evaluation of their
experimental results for the decarbonation of magnesite and calcite.
Figure 4 compares these data with results calculated from the equations of
state of Span and Wagner [3] and of Pitzer and Sterner [7]. While Pitzer
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Fig. 4. Fugacities calculated from the equations of Span and Wagner [3]
and of Pitzer and Sterner [7] at high temperatures. The corresponding
experimental results of Haselton et al. [33] are given as symbols indicating
the isotherm to which they belong.
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and Sterner fitted their equation to an extensive set of fugacities calculated
from published equilibria data by themselves, the data of Haselton et al.
were used only for an assessment of the extrapolation behavior during the
development of our equation. Nevertheless, the empirical reference equa-
tion, which is fitted to data only up to pressures of 800 MPa and tem-
peratures of 1073 K, yields a slightly better representation of these data up
to 1600 K and more than 3600 MPa.

At even higher pressures and temperatures shock-wave measurements
of the Hugoniot curve are available for some substances. The evaluation of
the Hugoniot relation

llh_ho=%(PII—P())(PJI+Ph_l) (1)

or

uy—ug=3(pn+ podps ' — o ") (2)

yields data for the enthalpy /4, or the internal energy u, as a function of
pressure p, and density p, at shock-wave pressures up to 0.1 GPa and tem-
peratures of several thousand Kelvin; the index 0 corresponds to the initial
state prior to release of the shock wave. Consideration of these data in the
development of reference equations of state, which are usually formulated
as a function of temperature and density, results in nonlinear relations
involving iterative solutions for temperature. Any attempt to use these data
in linear optimization algorithms requires a precorrelation of the tem-
peratures belonging to the Hugoniot data. Since no ppT data, which could
verify the precorrelated temperatures are available under these extreme
conditions, this approach implies the risk of distorting the experimental
information.

Figure 5 shows plots of the Hugoniot curve of carbon dioxide
calculated from the recent equations of Span and Wagner [ 3] and of Pitzer
and Sterner [7] and from the older equations of Ely et al. [34] and Ely
[35, 36]. The relevant experimental data for carbon dioxide reach up to
pressures of 28550 MPa and temperatures of approximately 4150 K; at
higher pressures spontaneous disintegration is observed [37]. Iteration of
the Hugoniot condition from the equation of Ely et al. [ 34] yields far too
high pressures and the equation of Ely [35, 36] results in pressures which
are far too low. Our new equation of state yields pressures which are also
clearly too low, if the scatter of the data is identified with their uncertainty.
However, bearing in mind the extreme conditions during a shock-wave
experiment, we consider this result at least as reasonable. The equation of
Pitzer and Sterner yields the best representation of the Hugoniot data, but
again, there is a major difference in the way these data are considered.
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Fig. 5. Plots of the Hugoniot curve ol carbon dioxide calculated from the
equations of Span and Wagner [3]. Pitzer and Sterner [7], Ely et al. [34].
and Ely [35. 36]. The corresponding experimental results of Nellis et al.
[37] and Schott [38] are given as symbols.

ppT data derived from the Hugoniot data were used with high weights in
fitting the coefficients of the equation of Pitzer and Sterner, whereas we used
the Hugoniot data only for an assessment of the extrapolation behavior of
our equation.

Figure 6 shows the plot of isotherms calculated from the equations of
Ely [35, 36] and Ely et al. [34] in the pressure, temperature, and density
range relevant for the representation of the Hugoniot data. The Hugoniot
data at the lowest pressures correspond to temperatures of approximately
1500 K and the data at the highest pressures to temperatures of approxi-
mately 4150 K. The equation of Ely, which resulted in too low pressures on
the Hugoniot curve (see Fig. 5), yields a much too steep plot of the ppT
isotherms and, correspondingly, too high pressures. For the equation of
Ely et al, too high pressures could be expected from the plot of the
Hugoniot curve, but Fig. 6 shows an unreasonable plot with intersecting
ppT isotherms and negative pressures. Obviously, the typical plot of
the Hugoniot curve given in Fig. 5 is not sufficient for an assessment of
the extrapolation behavior and has to be supplemented by other criteria,
whereby conditions regarding the functional form of the equations turned
out to be very useful (see Section 4). Both the equation of Pitzer and
Sterner and our new equation yield reasonable plots of the same isotherms,
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though the predicted pressures differ considerably especially for the 4150 K
isotherm (see Fig. 7).

During the development of the new reference equation of state for
nitrogen [13]. Hugoniot data were directly used according to Eq. (2.1)
as Ah="h(p,. py)—h(pe. p,) in combination with the new nonlinear
optimization algorithm of Tegeler et al. [11, 26]. This procedure resulted
in a good representation of the Hugoniot curve, although the Hugoniot
data were used only with low weights; their contribution to the sum of
squares was less than 1% of the total sum of squares. Figure 8 shows
the plot of the Hugoniot curve calculated from the new equation of state
for nitrogen. Obviously, reference equations of state are not necessarily
inferior to special high-pressure equations with regard to the representation
of Hugoniot data, but it remains questionable whether this very good
representation is a kind of overfitting or not, since little is known about the
accuracy of the data.

4. THE INFLUENCE OF THE FUNCTIONAL FORM

Today reference equations of state are usually formulated as empirical
descriptions of the fundamental equation

f=AT. p), (3)
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where the specific Helmholtz free energy f is usually split into a part
representing the contribution of the hypothetical ideal gas, (T, p), at the
given values of temperature T and density p and a residual part, /(7. p).
Thermal properties of a pure fluid can be described by derivatives of the
residual part alone; the ideal-gas part is needed only for the description
of caloric properties and can theoretically be derived at a high accuracy
from spectroscopic data. Thus, the main problem in the development of
reference equations of state is the formulation of a suitable empirical
description of the residual part of the Helmholtz free energy. For this
purpose, equations of the general form

S5 Ip, J
f'(T, ) Pol Fap .
AP ¢"(r,8) =Y n,8%" + Y n; 0%t exp(—0")
RT i=1 j=1
polynomial terms exponential terms
I\'LTI[
+ Z 1 feinl 6, 7) (4)
k=1
- —

critical region terms

have been developed from the classical BWR equation of state [41], where
R is the gas constant, ¢ the reduced density p/p, and 7 the inverse reduced
temperature T,/T. Depending on the accuracy of the available data sets
and the distribution of the data, the number of terms in Eq. (4), with one
adjustable parameter n,, n;, or n, each, varies between 20 and more than
50. Exponential terms can be found with density powers p; ranging from 1
to 8; according to the value of p, these terms are called E, to Eg terms here.
The critical-region terms in Eq. (4) correspond to different expressions
which have been developed in order to improve the description of proper-
ties in the critical region (see, e.g., Refs. 3, 25, and 42), but since these
terms have no influence on the extrapolation behavior, they are not dis-
cussed here. In state-of-the-art equations the values of the exponents
di.t.,d,t, and p,, the total number of terms and their distribution
between the different types of terms are determined by optimization
strategies [ 11, 22-24, 26, 437, while the coefficients n,, n;, and n, are deter-
mined by nonlinear multiproperty fits.

Older equations of state, e. g., the well-known MBWR-type equation
[30], are usually formulated for the compression factor =(T, p) = p(T, p)/
(pRT) using polynomial terms and E, terms as functional forms. Since the
exponents d, and ¢, of the polynomial terms do not change when the equa-
tion for - is integrated to yield ¢, the results discussed here are valid for
formulations in both z and ¢".
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Generally the terms in Eq. (4) are highly intercorrelated and it is
assumed that the behavior of an empirical equation of state cannot be
associated with the behavior of single terms in the equation. This conclu-
sion is true in most cases, but not for the extrapolation to very high tem-
peratures and very high pressures, which also correspond to high densities.
For high densities the behavior of the equation is influenced only by poly-
nomial terms and by E, terms, if the E, terms are combined with high den-
sity powers (d;> ~5). For high temperatures, which correspond to small
values of 7, terms with high temperature exponents ¢; or ¢, fade away, too.
Under these conditions, which are typical, for example, for the region
covered by Hugoniot data, one or a small number of leading terms can be
identified which determine the behavior of the whole equation.

For the equations of Ely [35, 36], Ely et al. [34], and Span and
Wagner [3], Table I lists the number of polynomial terms /p,, the values
of their exponents d; and ¢,, and rounded values of their coeflicients »,
according to the general form given in Eq. (4); the MBWR-type equation
of Ely et al. [34] was integrated and expressed in reduced variables to
match with the form of Eq. (4). The pressure calculated from an equation
for ¢* corresponds to

_ 0 r— p—z a¢r> 5
p=p’'+p ’RT”+RTp,,<a(5 r (5)

where p" is the pressure of the hypothetical ideal gas and p" is the residual
contribution to the pressure. Thus, along an isotherm the contribution of
a polynomial term 7 in Eq. (4) to the residual pressure grows proportional
to d, + \.
pAt high densities and moderate temperatures, the behavior of the
MBWR-type equation [34] is dominated by the polynomial term with
I=19 and d,,=8. The high-density power of this term is responsible for
the sharp increase in pressure on low-temperature isotherms, which is still
visible for the 1500 K isotherm in Fig. 6. At higher temperatures, the
influence of this term decreases due to the inverse temperature exponent
f,o=13.0 and the term with /=10, d;,=3, and t,,= 0.0 becomes dominant.
Since n,, is negative, the whole equation yields intersecting isotherms and
negative pressures for high temperatures. This example is typical for an
empirical equation of state which describes the available data at high
densities with many highly intercorrelated polynomial terms; equations l.ike
this yield an unpredictable and, in most cases, unreasonable extrapolation
behavior. ‘
At high temperatures and densities the behavior of the equation of Ely
[35, 36], which uses the functional form developed by Schmidt and
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Table I. Parameters of the Polynomial Terms in the Equations of State for Carbon Dioxide
of Ely [35,36]. Ely et al. [34]. and Span and Wagner [3]

Ely et al.“ [34] Ely [35.36] Span and Wagner [3]

T 1K 304.130 K 304.1282 K

P 44,0098 kg -m~* 467824 kg-m~* 467.6 kg-m~*

T 19 13 7

i n, d, " d, 3 ", d, I3
1 —0197-10%" 1 00 0485-10'" 1 0.0 0.389-10°° 1 0.00
2 0.176-10** 1 0.5 —0.192-10°" i 1.5 029410+ 1 0.75
3 -0388-10*° 1 10 0452-10°" 1 25 —0559-10°" 1 1.00
4 0.506-10*° 1 20 0.838.10*% 2 —05 —0768.-i0°° | 200
5 —0.553.10%7 1 30 0311-10*" 2 1.5 031710 2 0735
6 0265-1072 2 00 —0.184.10"" 2 20 0.548-10*" 2 200
7 —0214.10"" 2 1.0 0449.107' 3 0.0 0.123.10°" 3 0795
8 0.105.10%* 2 20 —-0362.107"' 3 1.0
9 —0410-1077 2 30 -0170-107" 3 25

10 =0127-107% 3 00 0.804.10°% 6 0.0

11 0.140-10*" 3 1.0 0.320-107% 7 2.0

12 0.206-10%' 3 20 —0659-10 % 7 5.0

13 0.120-102 4 1.0 —0462-10"% 8 2.0

14 -0162-10"" 5 20

15 0217-10%% 5 30

16 0522.1077 6 20

17 —-0478-107% 7 20

18 —0255-10*" 7 30

19 0383.1072 8 3.0

“The equation of Ely et al. was integrated to match with Eq. (4): the high numbers of the
coefficients of this equation are due mainly to the reduction with 7,,=1K.

* The equations of Ely and Ely et al. are valid for temperatures according to 1PTS-68 [44].
while our new equation is valid for temperatures according to ITS-90 [45]. However, the
difference between the temperature scales is negligible for the extrapolation discussion.

Wagner [46] for oxygen, is dominated by the term with /=10, d,,=6,
and t,,=0.0. The polynomial terms with higher density powers are theore-
tically dominant in the high-density limit, but since they are combined with
higher values of 7,, this influence becomes visible only at low temperatures,
where carbon dioxide is already in the solid state for the corresponding
densities. Though for this equation intersections of isotherms are avoided
in the fluid region, extrapolation of the oxygen-type equation does not
yield reasonable results. Figure 6 shows that the exponent d,, = 6 results in
a very sharp increase in pressure.
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Based on these and similar observations for other equations of state, an
attempt was made to formulate demands on the mathematical form of an
empirical equation of state in order to ensure a more reasonable extrapola-
tion behavior. These demands can be summarized in the following way:

« The number of polynomial terms in the equation should be small; if
possible, less than 10.

Intercorrelations between the polynomial terms affecting the extra-
polation to high densities cannot be avoided completely this way, but they
are reduced considerably. At the same time an increased number of E,
terms has to be used to guarantee the necessary flexibility of the equation
in the range of intermediate densities. For functional forms like this,
usually only one or two terms determine the behavior of the equation in
the range of very high temperatures and densities. The term which is domi-
nant at high densities (high values of J) and high temperatures (small
values of 7) is the polynomial term with the smallest temperature exponent
1, among the terms with the highest density exponents d;. For this term the
following requirements can be formulated:

o The coefficient n, has to be positive to yield a positive contribution
to the residual pressure.

« The temperature exponent should fulfill the condition 0 <7, <1 since
the pressure should increase on an isochore with increasing tempera-
ture but the compression factor should decrease.

« The density exponent d; has to be an integer value and should be
equal to three or four.

These conditions were considered during the development of the new
reference equations of state for carbon dioxide [31, water [9, 10], argon
[11, 12], and nitrogen [13]. For our new equation of state for carbon
dioxide, Fig. 9 shows the relative contributions of all polynomial terms, of
all E, terms, and of the leading polynomial term to the residual pressure
p"; the plotted lines correspond to isotherms. In the region where the
available Hugoniot data indicate that carbon dioxide is still chemically
stable roughly for reduced densities 4.5< plp.<5.5 and reduced tem-
peratures 5 < 7/T. <15, the polynomial term with d,=3 and t,=0.75
dominates the behavior of the equation with a contribution of more than
70% of the total residual pressure. Since this dominant term fulfills the
requirements given above, the whole equation behaves reasonably in the
high-density limit. The negative contribution of the E, terms in the range
of intermediate densities was not desired with respect to extrapolation but
unavoidable for the representation of accurate data at lower temperatures;
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Fig. 9. Contribution to the residual pressure p” according to Eq. (5) of all
polynomial terms. all E, terms. and the leading polynomial term of the equation
of Span and Wagner [3] for carbon dioxide.

at least with respect to basic properties such as pressure, enthalpy, and
fugacity, it does not affect the extrapolation up to the limits where
spontaneous disintegration occurs.

Similar to carbon dioxide, the mathematical form has finally been a
compromise between requirements for representing the data set and the
extrapolation behavior for the other reference equations [9-13] as well.
But nevertheless, the extrapolation behavior of an empirical equation of
state becomes predictable from its mathematical structure by such investi-
gations and unreasonable behavior can be avoided. The new equations of
state for carbon dioxide, water, argon, and nitrogen yield reasonable
results up to extreme temperatures and pressures.

The condition given for the density power of the leading term,
3<d, <4, results from experiences with the slope of isotherms calculated
from different preliminary equations and is completely empirical. This
condition seems to be inconsistent with the results of Pitzer and Sterner
[4. 6-8], who claim that the isothermal slope of the residual part of the
Helmholtz free energy becomes linear for high temperatures and pressures.
Based on these theoretical considerations it seems incomprehensible why
the equation of Pitzer and Sterner and our new equation of state for
carbon dioxide yield at least similar results up to the limits of the chemi-
cally stable region (see Figs. 4, 5, and 7). A more detailed investigation of
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the numerical behavior of the formulation of Pitzer and Sterner shows that
its behavior at high densities is determined by a strong intercorrelation
between the positive contribution of the polynomial term, which is linear
in density, and the negative contribution of the fractional terms in the
equation. The leading linear term becomes dominant only for densities far
beyond the densities accessible by shock-wave measurements, which reach
up to p/p. = 5.5 for nondisintegrated carbon dioxide. In the region covered
by Hugoniot data the equation of Pitzer and Sterner mimics a slope of ¢,
which implies a density dependence with exponents between 2.6 for 4150 K
and 2.9 for 1500 K. Thus, the results of Pitzer and Sterner indeed support
leading density powers of d,=3 for the polynomial terms in an empirical
equation of state.

5. THE REPRESENTATION OF IDEAL CURVES AS A CRITERION
FOR REASONABLE EXTRAPOLATION BEHAVIOR

Ideal curves are curves along which one property of a real fluid is
equal to the corresponding property of the hypothetical ideal gas at the
same temperature and density. Based on this very general definition, ideal
curves can be defined for almost every property, but usually the discussion
is focused on the ideal curves of the compression factor and its first
derivatives; these curves are given in Table II together with their defini-
tions. In the 1960s, there was an intensive investigation of ideal curves in

Table II. The Zeroth- and First-Order Ideal Curves of the Compression Factor and
Their Definition in Terms of the Compression Factor. =(T. p). and of the Residual
Part of the Reduced Helmholtz Energy. ¢'(z. d)

Definition in terms of the

Designation Compression factor Residual Helmholtz energy
op°
. e 1 . y - . 0
{Classical ) ideal curve -=1 <6(5 >r-

o apr\ [
; — = —_— — =0
Boyle curve (5I’> . 0 < 7 >r +0 ( 2 ).
-,__ (745‘ . ald)r l:*,l(pt
Joule-Thomson inversion curve <E—T>,, =0 <—a;> r +0 <F>t +1 <(_1‘), 5r> =0
) é

i sion curve —
Joule inversio! <6T

840 18 6-7
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order to specify criteria for a generalized behavior of pure fluids. Well-
known results are those of Brown [47], which were summarized by
Rowlinson [48], and the results of Gunn et al. [49] and Miller [50], espe-
cially on the Joule-Thomson inversion curve. Less well-known are the very
detailed studies by Morsy [51], Straub [52]. and Schaber [53], which
have been published only in German. More recently, Angus [54] and de
Reuck [1] gave short summaries of the known characteristics of ideal
curves. Although various authors have stated that the representation of
ideal curves is a sensitive test for the extrapolation behavior of equations
of state, systematic investigations have always dealt with results for simple
model fluids, with simple equations of state, or with values derived directly
from experimental data or from compression factors tabulated for corre-
sponding states approaches. In order to see whether ideal curves are really
useful for an assessment of the extrapolation behavior of empirical equa-
tions of state, we compared the ideal curves calculated from equations of
state for argon [11, 12], nitrogen [13, 29, 30], oxygen [46], methane
[25], ethane [55], carbon dioxide [3, 7], water [9, 10], and helium [56]
with each other and with the “theoretical” predictions.

Figure 10 shows a typical plot of the ideal curves discussed here in a
reduced (pressure, temperature) diagram with logarithmic axes. The dashed
lines indicate the limits of the regions, where primary data (usually ppT
data) are available for the corresponding substance. For reference sub-
stances with low critical temperatures and pressures such as nitrogen and
argon, the Boyle, the ideal, and the Joule-Thomson inversion curve lie
completely within the range covered by primary data; for helium even
the Joule inversion curve lies within this range. The situation changes if
substances with higher values for the critical temperature and the critical
pressure or with a more restricted data set are investigated. For carbon
dioxide and methane the Joule-Thomson inversion curve reaches into the
extrapolation region; for water, oxygen, and ethane the Boyle and the ideal
curve exceed the temperature range and the Joule inversion curve also
exceeds the pressure range covered by data.

When considering results of earlier investigations, certain features of
the ideal curves should be universal at least for simple substances [ 49, 50,
53]. Table 1II summarizes the results of a comparison of these “theoretical
predictions” with the corresponding values calculated from the equations of
state considered here. For nitrogen and carbon dioxide, the results of
different equations are given for comparison.

The best agreement among the results calculated from the different
equations of state can be found for the densities on the ideal and the Boyle
curve at T=T,. Since simple corresponding-states approaches yield good
results in the extended critical region of simple fluids, this good agreement
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Fig. 10. A typical plot of the zeroth- and first-order ideal curves of the compression
factor in a reduced double-logarithmic (pressure, temperature) diagram. The
dashed lines indicate the regions where primary data are available for the substan-
ces considered in this paper.

could be expected. The results for carbon dioxide, water, and helium differ
considerably.

For argon, methane, oxygen, and nitrogen the position of the pressure
maximum of the Joule-Thomson inversion curve varies only within +2%
in terms of reduced pressure and reduced temperature. Due to its location
at reasonably high pressures and more than twice the critical temperature,
the position of this maximum could be an interesting extrapolation
criterion, for example, for equations of state for refrigerants, but unfor-
tunately the results differ significantly from the expected values for more
complex fluids. The same is true for the reduced temperatures at the end
points of the Boyle, the ideal, and the Joule-Thomson inversion curve,
which agree within +4% for argon, methane, oxygen, and nitrogen, while
significantly different results were found for the other substances.

Thus, the numerical results for the characteristic points of the different
ideal curves are useful as criteria for an assessment of the extrapolation
behavior only for simple substances with limited data sets. A comparison
between the different equations of state for nitrogen and carbon dioxide
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Table HI. Characteristic Values of the Ideal Curves of Helium, Argon. Methane. Oxygen,
Nitrogen. Ethane, Carbon Dioxide, and Water Calculated from Accurate Equations of
State in Comparnison with “Theoretically™ Predicted Values

Substance Equation @ 0 0 Gyl A T R
Predicted values 000 266 500 1935 1435 2235 11.8:2.25
Helium Sychev et al. [36] —0.39 467 903 299 1407 220 17.5 448
Argon Tegeler et al. [11.12] 0.00 271 507 203 1425 2.2010 1.6 2.30
Methane Sctzmann & Wagner [23] 001 267 504 ¢ 1.428 2203 1R 228
Oxveen Schmidt & Wagner [46] 0.02 262 490 ¢ 1425 2201 11.7 225
Nitrogen Span et al. [13] 004 259 482 174 1425 2193 116220

Jacobsen et al. [29] 004 260 483 166 1.423 2,191 11.6 2.20

Jacobsen & Stewart [30] 0.04 238 476 161 1429 2095 116221
Ethane Friend et al. [53] 010 245 457 N 1428 2096 121 214
Carbon dioxide  Span & Wagner [3] 0.23% 237 445 2689 1441 2232 125 1,94

Pitzer & Sterner [7] 023" 236 429 238 1448 2242 134190
Water Prul} & Wagner [Y. 10] 034 235 393 77 1.540 2638 187 196

“ Reduced temperature ¢ =7 7. at which the Boyle and the ideal curve end for p =0; at this
temperature the condition Bt 7T} =0 holds for the second virial coeflicient.

" Reduced temperature (= 7T, at which the Joule- Thomson inversion curve ends for p = 0:
at this temperature the condition B:dT = B T holds for the second virial cocflicient.

“ Reduced temperature 0= T-T_. at which the Joule inversion curve ends tor p=0: at this
temperature the condition ¢B;dT =0 holds for the second virial coeflicient.

“ Reduced density 6 =p p. on the Boyle curve for T=T_.

“ Reduced density d = p-p, on the ideal curve for 7=7_.

" Reduced pressure 7= p.p. and temperature (=TT, at the pressure maximum ol the
Joule Thomson inversion curve.

¢ Equations without a maximum in B(T) yield no intersection between the Joule inversion
curve and the axis p=0.

" Calculated from an extrapolation of the vapor pressure equation given in Rel. 3.

supports this thesis. Although the accuracy of reference equations of
state for nitrogen in the high-temperature, high-pressure region has been
improved substantially since 1973 [13. 29, 30], the three investigated
equations yield very similar results for the characteristic points of the ideal
curves; based on these results, no assessment of the equations is possible.
For carbon dioxide, the differences between the equation of Span and
Wagner [3] and that of Pitzer and Sterner [ 7] are larger, but since carbon
dioxide does not belong to the group of simple substances, the differences
are not yet significant enough for an assessment.
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Plots of the zeroth- and first-order ideal curves of the compression
factor calculated from three reference equations of state for nitrogen [ 13,29, 30].

Nevertheless. the plot of the ideal curves® contains important infor-
mation on the behavior in the high-temperature, high-pressure region. To
demonstrate the sensitivity of this graphical criterion, Fig. 11 shows the
plot of the ideal curves of nitrogen calculated from three different equations
of state. For the Boyle, the ideal, and the Joule-Thomson inversion curve
all three equations yield very similar plots. Based on the level of accuracy
achieved by empirical reference equations of state, no problems in the
representation of ideal curves should occur in the range where accurate
data are available. For the Joule inversion curve calculated from the equa-
tion of Jacobsen and Stewart [ 30], an inflection point can be seen at about
T/T. = 3.5 and p/p. ~ 100. At this point the differences between densities
calculated from the equations of Jacobsen and Stewart and Span et al.
[13] are still within dp/p >~ +0.1% but with an increasing tendency
toward higher temperatures and pressures where they exceed the limit of

“ Plots of the ideal curves. the Boyle curves, the Joule-Thomson inversion curves. and the
Joule inversion curves ol all considered substances are given in the Appendix. For helium,

the results of a transformation by ellective critical parameters [57] are also shown in the
Appendix.
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+1%. Thus, the plot of the Joule inversion curve seems to be a reasonably
sensitive indication for incorrect behavior of an equation of state at high
temperatures and pressures.

The same can be shown from a comparison between the two equations
[3, 7] for carbon dioxide. Figure 3 shows that the equation of Pitzer and
Sterner [ 7] deviates from the data of Vukalovich and Altunin [32] by
up to dp/p=1% for T/T.<3.5 and p/p.<8; in Fig. 12, these deviations
result in visible deformations of the Boyle and the ideal curve. At higher
temperatures stronger deformations of the Joule-Thomson and the Joule
inversion curve occur.

Since the equation of Pitzer and Sterner was fitted to second virial
coefficients resulting from a corresponding-states approach, the end tem-
peratures for all ideal curves are constrained to values within the expected
limits (see the footnotes to Table III). But obviously inconsistencies
between the second virial coefficients and other data in the high-tem-
perature region resulted in “overhanging” plots of all ideal curves. If corre-
sponding-states approaches are used to improve the extrapolation behavior,
a transformation of ppT data seems to be advantageous (see, e.g., Ref. 58).

300
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1
(=]
T T T TTrrIT

S

[#%)

Reduced pressure p/p,

aAINI [Bapt

T T S N R 1 PN

0.7 1 2 3 5 10 20 30
Reduced temperature 7/ T,

Fig. 12. Plots of the zeroth- and first-order ideal curves of the compression
factor calculated from the equation of Span and Wagner [3] and Pitzer and
Sterner [ 7] for carbon dioxide.
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6. SUMMARY AND CONCLUSION

It has been shown that state-of-the-art multiparameter equations
of state are able to represent thermal and caloric data up to very high
pressures and temperatures and that they are nevertheless not flexible
enough to follow systematically deviant plots of experimental data in
this region. Comparisons with fugacities and Hugoniot data at very high
pressures and temperatures have been shown as examples for an assessment
of the extrapolation behavior.

At very high temperatures and pressures, the extrapolation behavior of
an equation of state can be explained by certain features of its functional
form. The investigation of these relations resulted in demands on the func-
tional form of an empirical equation of state, which make it possible to
achieve a reasonable extrapolation behavior up to extreme conditions of
temperature and pressure.

Finally, ideal curves have been investigated as an extrapolation
criterion for the region of high temperatures and high pressures. Numerical
values for reduced variables at characteristic points of the ideal curves are
sufficiently universal only for simple substances, but the plots given in the
Appendix show common features for all investigated substances. Deforma-
tions of the ideal curves turned out to be a suitable criterion for the detec-
tion of faulty behavior.

Considering these results, empirical equations of state can be designed
to behave reasonably far beyond the pressure and temperature range where
accurate experimental data are available, if intended even up to the limits
of chemical stability of the respective substance.

Though this statement is very encouraging, it also contains the major
shortcoming of current findings on the extrapolation behavior of empirical
equations of state. While different criteria can be used to test whether the
extrapolation behavior of an equation of state is reasonable, only little
is known about uncertainties beyond the range covered by reliable
experimental data. A systematic investigation of this problem is lacking.

Furthermore, corresponding-states approaches (see e.g., Refs. 58 and
59) and molecular dynamics calculations (see e.g., Ref. 60) can be very use-
ful both for tests regarding the extrapolation behavior of empirical equa-
tions of state and for establishing equations of state for substances with
restricted data sets. Though several publications on these techniques exist,
their potential for the development of reference equations of state has never
been investigated to a level where clear rules for their use, their limitations,
and the resulting uncertainties could be given.

Finally, there is still no common agreement about the importance
of the extrapolation behavior. While thermodynamic data at very high
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temperatures and pressures are regarded as important, for example, for
substances such as argon, nitrogen, and carbon dioxide, they are probably
of purely academic interest for refrigerants which disintegrate at tem-
peratures below twice their critical temperature. Finally, since there is
always a compromise among the complexity of an equation of state, the
expenditure for its establishment, its quality in the regions where
experimental data are available, its extrapolation behavior, and various
other criteria, it is not useful to formulate extreme requirements on the
extrapolation behavior under all circumstances. As long as there is no com-
mon agreement on this topic, the most important conclusion is that
authors should indicate limitations of their equations of state.

APPENDIX

The plots of the Boyle curves, the classical ideal curves, the Joule-
Thomson inversion curves, and the Joule inversion curves of all considered
substances are given in Figs. Al to A4. The general shape of the curves is
very similar except for water and helium; conclusions drawn for the Joule
inversion curve remain vague, since the plots of this curve reflect the
extrapolation behavior of the equations of state rather than features of the
considered substances. Only the Joule inversion curve of helium lies
completely within the range covered by primary data, but the shape of the
ideal curves of the quantum gas helium is too different to allow well-
founded conclusions for other substances. The ideal and the Boyle curve of
helium can be scaled to the corresponding curves of simple substances by
the effective critical parameters proposed by Gunn et al. [ 57], but for the
Joule-Thomson inversion and the Joule inversion curve this approach fails
(see Fig. AS). Thus, the Joule inversion curves of argon and nitrogen are
probably the best approximations of the general shape of the Joule inver-
sion curve of simple {luids.
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